Preliminary communication

KONKURRIERENDE BILDUNG VON HETEROMETALL-ZWEIKERN-KOMPLEXEN MIT μ -C=CHPh UND μ - η^1 , η^3 -CHCPhCO-BRÜCKENLIGANDEN BEI DER REAKTION VON C₅H₅Rh(PhC=CH)PPrⁱ₃ MIT Fe₂(CO)₉

H. OTTO, F.J. GARCIA ALONSO und H. WERNER*

Institut für Anorganische Chemie der Universität Würzburg, Am Hubland, D-8700, Würzburg (B.R.D.)

(Eingegangen den 18. Februar 1986)

Summary

The alkyne complex $C_5H_5Rh(PhC\equiv CH)PPr_3^i$ reacts with Fe₂(CO)₉ to form two isomeric dinuclear products, $C_5H_5(PPr_3)Rh(\mu-C=CHPh)(\mu-CO)Fe(CO)_3$ and $C_5H_5(PPr_3)Rh(\mu-\eta^1,\eta^3-CHCPhCO)Fe(CO)_3$. The X-ray crystal structure of the latter has been determined.

Der koordinativ ungesättigte 14-Elektronen-Komplex [RhCl(PPrⁱ₃)₂] [1, 2] ist ausserordentlich reaktiv und addiert bereits unter sehr milden Bedingungen nicht nur CO, N₂ oder C₂H₄ [1] sondern auch Alkine unter Bildung quadratisch-planarer Verbindungen des Vaska-Typs [3, 4]. Mit Phenylacetylen bildet sich der Komplex *trans*-[RhCl(PhC=CH)(PPrⁱ₃)₂] (I), der in Abhängigkeit von den Reaktionsbedingungen mit NaC₅H₅ entweder zu C₅H₅Rh(=C=CHPh)-PPrⁱ₃ (II) oder zum Isomeren C₅H₅Rh(PhC=CH)PPrⁱ₃ (III) reagiert [4]. Die Vinyliden-Verbindung II besitzt eine sehr elektronenreiche Rh=C-Doppelbindung, so dass mit zahlreichen elektrophilen Substraten Additionsreaktionen möglich sind [5]. Mit einem 16-Elektronen-Fragment wie z.B. Fe(CO)₄ entsteht der Zweikernkomplex IV (siehe Schema 1), in dem die aus dem Alkin PhC=CH in der Koordinationssphäre des Rhodiums entstandene Vinylidengruppe :C=CHPh zwei unterschiedliche Metallatome verbrückt [6].

Angesichts der hohen Aktualität, welche die Chemie von Heterometall-Mehrkernkomplexen gegenwärtig geniesst [7], interessierte es uns herauszufinden, ob auch ausgehend von III, d.h. dem aus I entstehenden Produkt mit intaktem Alkinliganden, eine RhFe-Zweikernverbindung erhältlich ist. Die Umsetzung von III mit einer äquimolaren Menge $Fe_2(CO)_9$ in THF liefert neben noch nicht näher identifizierten Nebenprodukten hauptsächlich zwei Verbindungen, die chromatographisch getrennt werden können und von denen eine

0022-328X/86/\$03.50 © 1986 Elsevier Sequoia S.A.

SCHEMA 1

Fig. 1. Molekülstruktur von V im Kristali.

der schon bekannte Zweikernkomplex IV ist. Die zweite Verbindung V ist ein Isomer von IV und besitzt nach dem Ergebnis der Röntgenstrukturanalyse [8] die in Fig. 1 gezeigte Struktur.

III + Fe₂(CO)₉
$$\longrightarrow$$
 IV + C₅H₅(PPr¹₃)Rh(μ - η^1 , η^3 -CHCPhCO)Fe(CO)₃
(V)

TABELLE 1

AUSGEWÄHLTE BINDUNGSABSTÄNDE (pm) UND -WINKEL (Grad) VON V (M ist der Schwerpunkt des $C_{s}H_{s}$ -Rings)

Rh—Fe	269.8(1)	Fe-C(2) 177.2(7) C(2)-O(2)	117.0(8)	
Rh—P	230.8(2)	Fe-C(3) 178.0(8) C(3)-O(3)	113.9(9)	
Rh-C(2)	256.9(7)	Fe-C(4) 195.7(7) C(4)-O(4)	119.6(8)	
Rh-C(6)	201.6(6)	Fe-C(5) 212.4(5) C(4)-C(5)	146.9(8)	
Rh-M	191.3	Fe-C(6) 206.3(6) C(5)-C(6)-	139.3(9)	
Fe—C(1)	179.9(6)	C(1)-O(1) 116.1(8) C(6)—H(6)	94(4)	
Fe—Rh—P	106.54(5)	C(4)—Fe—C(5)	42.0(2) O(4)C(4)C(5)	138.3(6)
Fe-Rh-C(5) 49.3(2)	C(4)—Fe—C(6)	72.0(3) Fe	-C(5)C(4)	62.9(3)
P-Rh-C(6)	91.5(2)	C(5)—Fe—C(6)	38.8(2) Fe-	-C(5)—C(6)	68.2(3)
M—Rh—Fe	126.3	FeC(1)O(1)	172.7(5) Fe-	-C(5)C(7)	126.4(4)
M—Rh—P	125.4	Fe-C(2)-O(2)	166.5(6) C(4)C(5)C(6)	111.4(5)
M-Rh-C(6) 131.8	Rh—C(2)—O(2)	119.0(5) C(4)C(5)C(7)	120.8(5)
Rh-Fe-C(4	4) 80.1(2)	Fe—C(3)—O(3)	178.5(6) C(6)—C(5)C(7)	126.4(5)
Rh-Fe-C(5) 75.3(2)	FeC(4)O(4)	145.3(5) Rh-	C(6)C(5)	120.7(4)
Rh-Fe-C(5) 47.9(2)	Fe-C(4)-C(5)	75.1(4) Rh-	-C(6)H(6)	125(2)

V enthält eine Metall-Metall-Bindung, welche mit 269.8(1) pm (Tab. 1) um 9.4 pm länger als diejenige in dem mit IV gut vergleichbaren Komplex C_5H_5 - $(PPr_3^i)Rh(\mu-C=CH_2)(\mu-CO)Fe(CO)_3$ ist [6]. Das Eisen- und das Rhodiumatom werden durch eine CHCPhCO-Gruppierung verbrückt, die durch C-C-Verknüpfung aus dem Alkin und einem CO-Liganden entstanden ist. Der Abstand Rh-C(6) (201.6(6) pm) ist mit dem Rh-C-Abstand zum verbrückenden Vinyliden-Kohlenstoffatom in C_5H_5 (PPr¹₃)Rh(μ -C=CH₂)(μ -CO)Fe(CO)₃ (201.1(3) pm) praktisch identisch. Im Gegensatz dazu ist der Abstand Fe-C(6) mit 206.3(6) pm relativ lang (vgl. Fe–C(=CH₂) im μ -Vinvliden-Komplex: 193.6(3) pm [6]), was darauf hinweist, dass die Bindungsverhältnisse allein mit der Grenzformel A nicht vollständig zu beschreiben sind. Die C-C-Abstände in der C_3 -Brücke sprechen viel eher für eine wie unter B oder C gezeigte Struktur. Die Kohlenstoffatome C(4), C(5) und C(6) bilden mit dem Rhodiumatom einen fast planaren Bogen, wobei die Winkel an C(5) und der Winkel Rh-C(6)-C(5)nur wenig von 120°C abweichen. Ähnliche Bindungsverhältnisse wie in V liegen vermutlich in dem von Knox et al. aus $[C_5H_5Ru(CO)_2]_2$ und C_2Ph_2 erhaltenen Zweikernkomplex $[C_5H_5(CO)Ru]_2(\mu-CO)(\mu-\eta^1,\eta^3-CPhCPhCO)$ (VI) vor [9]. Der Winkel O-C-C ist in den beiden Verbindungen (V: 138.3(6) pm; VI: 138.1(4) pm) gleich. Die C-C-Abstände der C_3 -Brücke in der Diruthenium-Verbindung unterscheiden sich allerdings nur wenig (142.3(6) und 146.1(5) pm [9]), was für die Dominanz einer allylischen Grenzformel (entsprechend C) spricht.

Im Gegensatz zu VI ist in V einer der drei CO-Liganden semi-verbrückend gebunden. Entscheidendes Kriterium hierfür ist der Winkel Fe-C(2)-O(2), der

TABELLE 2

ATOMKOORDINATEN VON V

Atom	x	У	z		
Rh	0.28624(5)	0.21589(3)	0.71523(3)		
Fe	0.22863(8)	0.32846(4)	0.61460(6)		
P	0.32736(17)	0.14074(8)	0.58514(12)		
0(1)	0.27223(46)	0.33487(21)	0.38479(34)		
O(2)	-0.02576(43)	0.25713(24)	0.63463(32)		
O(3)	0.08978(52)	0.45341(27)	0.60694(44)		
0(4)	0.28053(44)	0.39118(24)	0.82849(34)		
C(1)	0.25361(55)	0.32806(29)	0.47427(50)		
C(2)	0.08379(67)	0.27894(35)	0.63090(42)		
C(3)	0.14273(64)	0.40433(39)	0.60899(50)		
C(4)	0.30435(62)	0.36169(32)	0.74987(51)		
C(5)	0.42345(55)	0.34322(30)	0.69033(40)		
C(6)	0.40979(53)	0.28093(31)	0.64909(41)		
C(7)	0.52636(64)	0.39263(32)	0.66108(43)		
C(8)	0.64701(64)	0.37367(30)	0.61872(43)		
C(9)	0.74406(68)	0.41976(41)	0.59485(46)		
C(10)	0.71948(94)	0.48309(41)	0.60823(60)		
C(11)	0.60050(110)	0.50249(39)	0.64924(80)		
C(12)	0.50435(74)	0.45690(40)	0.67699(69)		
C(13)	0.25555(105)	0.14068(40)	0.83873(49)		
C(14)	0.37178(70)	0.17988(47)	0.87115(48)		
C(15)	0.32217(80)	0.24047(44)	0.88955(47)		
C(16)	0.17965(81)	0.24111(45)	0.86479(47)		
C(17)	0.13884(84)	0.17969(56)	0.83572(57)		
C(18)	0.32909(55)	0.17044(27)	0.44636(40)		
C(19)	0.40544(67)	0.13118(29)	0.36635(46)		
C(20)	0.18325(60)	0.18342(30)	0.40193(41)		
C(21)	0.20785(78)	0.07078(35)	0.58786(53)		
C(22)	0.23380(79)	0.01701(33)	0.50546(59)		
C(23)	0.05615(79)	0.09151(38)	0.58978(56)		
C(24)	0.49631(65)	0.10113(31)	0.60397(47)		
C(25)	0.51086(77)	0.05581(34)	0.69546(56)		
C(26)	0.61152(62)	0.14904(32)	0.60795(49)		
H(6)	0.47878(394)	0.27035(196)	0.60339(302)		
	DL				
	r.		Ph	Р'n	٥

 $[Rh] = C_{s}H_{s}(PPr_{3}^{i})Rh, [Fe] = Fe(CO)_{2}$

mit 166.5(6)° in dem für semi-verbrückende Carbonylgruppen typischen Bereich liegt [10]. Ausserdem ist der Abstand Rh—C(2) (256.9(7) pm) deutlich kürzer als die Summe der kovalenten Radien, so dass die Annahme einer Wechselwirkung zwischen dem Rhodium- und dem Kohlenstoffatom C(2) vernünftig ist.

Von den spektroskopischen Daten von V (für nähere Angaben siehe Vorschrift) ist zum einen die ν (CO)-Bande der CHCPhCO-Brücke bei 1720 cm⁻¹ und zum anderen die Lage des Signals des Protons und des Kohlenstoffatoms

Präparative Vorschrift

Eine Lösung von 650 mg (1.51 mmol) III in 40 ml THF wird mit 550 mg (1.51 mmol) Fe₂ (CO)₂ versetzt und 4 h bei Raumtemperatur gerührt. Nach Abziehen des Solvens im Vakuum wird das verbleibende Öl in 25 ml Hexan gelöst und die Lösung an Al_2O_3 (Woelm, neutral, Aktivitätsstufe V) chromatographiert. Mit Hexan werden zunächst geringe Mengen nicht näher identifizierter Neben-v produkte und danach mit Hexan/Benzol 12/1 zwei unterschiedlich schnell wandernde rote Zonen eluiert. Die erste Zone enthält den μ -Vinyliden-Komplex IV [6], der an Hand des ¹H-NMR-Spektrums charakterisiert wird. Die zweite Zone enthält den Zweikernkomplex V, der nach Abziehen des Lösungsmittels und Umkristallisieren des Rückstandes aus THF/Pentan bei -78°C in Form roter Kristalle anfällt. Ausbeute 280 mg (31%). (Gef.: C, 52.61; H, 5.62. $C_{26}H_{32}$ FeO₄PRh ber.: C, 52.19; H, 5.39%). IR (KBr): ν (CO) 1990, 1935, 1875, 1720 cm⁻¹. ¹H-NMR (C_6D_6) (δ , ppm): δ (RhCH) 9.62(d), J(PH) 14.0 Hz; $\delta(C_6H_5)$ 7.30(m); $\delta(C_5H_5)$ 5.17(bs); $\delta(PCH)$ 2.42(m); $\delta(PCHCH_3)$ 1.47(dd), J(PH) 14.0, J(HH) 7.0 Hz und 1.43(dd), J(PH) 13.8, J(HH) 7.2 Hz. ³¹P-NMR $(CDCl_3): \delta$ 55.49(d), J(RhP) 183.1 Hz. ¹³C-NMR $(CDCl_3): \delta(CCO)$ 228.26(s); δ (CO) 215.08(s); δ (RhCH) 156.33(dd), J(PC) 13.1, J(RhC) 33.7 Hz; δ (C₆H₅) $139.03(s), 128.55(s), 126.80(s), 126.69(s); \delta(C_5H_5), 91.48(s); \delta(CCO), 63.10(s);$ δ (PCH) 27.01(d), J(PC) 21.6 Hz; δ (PCHCH₃) 20.09(s) und 19.47(s).

Dank. Die vorliegende Arbeit wurde von der Deutschen Forschungsgemeinschaft, dem Fonds der Chemischen Industrie, dem Ministerio de Educacion y Ciencia, Spanien, und durch grosszügige Sachspenden der Firmen BASF AG, Ludwigshafen, DEGUSSA, Hanau, und HM-Leasing, Heidelberg, unterstützt. Herrn Dr. W. Buchner, Herrn Dr. D. Scheutzow und Herrn C.P. Kneis danken wir für NMR-Messungen und Frau U. Neumann für Elementaranalysen.

Literatur

- 1 C. Busetto, A. D'Alfonso, F. Maspero, G. Perego und A. Zazetta, J. Chem. Soc., Dalton Trans., (1977) 1828.
- 2 H. Werner, J. Wolf und A. Höhn, J. Organomet. Chem., 287 (1985) 395.
- 3 H. Werner, J. Wolf, U. Schubert und K. Ackermann, J. Organomet. Chem., 243 (1983) C63.
- 4 J. Wolf, H. Werner, O. Serhadli und M.L. Ziegler, Angew. Chem., 95 (1983) 428; Angew. Chem. Int. Ed. Engl., 22 (1983) 414.
- 5 (a) H. Werner, J. Wolf, R. Zolk und U. Schubert, Angew. Chem., 95 (1983) 1022; Angew. Chem. Int. Ed. Engl., 22 (1983) 981; (b) H. Werner, J. Wolf, G. Müller und C. Krüger, Angew. Chem., 96 (1984) 421; Angew. Chem. Int. Ed. Engl., 23 (1984) 431; (c) H. Werner, Angew. Chem., 95 (1983) 932; Angew. Chem. Int. Ed. Engl., 22 (1983) 927.
- 6 F.J. Garcia Alonso, H. Werner, K. Peters und H.G. von Schnering, Publikation in Vorbereitung; siehe auch: H. Werner, F.J. Garcia Alonso, H. Otto, K. Peters und H.G. von Schnering, J. Organomet. Chem., 289 (1985) C5.
- 7 (a) W.A. Gladfelter und G.L. Geoffroy, Adv. Organomet. Chem., 18 (1980) 207; (b) B.F.G. Johnson (Ed.), Transition Metal Clusters, John Wiley and Sons, New York, 1980.

- 8 Einkristalle aus Hexan; Messung mit Kristall der Grösse $0.4 \times 0.3 \times 0.04$ mm. Monoklin, Raumgruppe $P2_1/n$ (Z = 4), a 982.7(3), b 2066.0(7), c 1262.2(4) pm, β 92.52(2)°, V 2560 \times 10⁶ pm³, ρ (ber.) 1.59 g/cm³, ρ (exp.) 1.55 g/cm³. 3777 unabhängige Reflexe (5° $\leq 2\theta \leq 47^{\circ}$, Mo- K_{Q} , Graphitmono-chromator, λ 71.069 pm). R = 0.042, $R_{W} = 0.034$ für 2826 Strukturfaktoren ($F_0 \geq 3.92\sigma(F_0)$). Weitere Einzelheiten zu der Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD 51804 der Autoren und des Zeitschriftenzitats angefordert werden.
- 9 A.F. Dyke, S.A.R. Knox, P.J. Naish und G.E. Taylor, J. Chem. Soc., Chem. Commun., (1980) 409; J. Chem. Soc., Dalton Trans., (1982) 1297.
- 10 R. Colton und M.J. McCormick, Coord. Chem. Rev., 31 (1980) 1.